Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvconst2g
Next ⟩
fconst2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvconst2g
Description:
The value of a constant function.
(Contributed by
NM
, 20-Aug-2005)
Ref
Expression
Assertion
fvconst2g
⊢
B
∈
D
∧
C
∈
A
→
A
×
B
⁡
C
=
B
Proof
Step
Hyp
Ref
Expression
1
fconstg
⊢
B
∈
D
→
A
×
B
:
A
⟶
B
2
fvconst
⊢
A
×
B
:
A
⟶
B
∧
C
∈
A
→
A
×
B
⁡
C
=
B
3
1
2
sylan
⊢
B
∈
D
∧
C
∈
A
→
A
×
B
⁡
C
=
B