Metamath Proof Explorer


Theorem fvconstdomi

Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypothesis fvconstdomi.1 B V
Assertion fvconstdomi A × B X B

Proof

Step Hyp Ref Expression
1 fvconstdomi.1 B V
2 dmxpss dom A × B A
3 2 sseli X dom A × B X A
4 1 fvconst2 X A A × B X = B
5 3 4 syl X dom A × B A × B X = B
6 domrefg B V B B
7 1 6 ax-mp B B
8 5 7 eqbrtrdi X dom A × B A × B X B
9 ndmfv ¬ X dom A × B A × B X =
10 1 0dom B
11 9 10 eqbrtrdi ¬ X dom A × B A × B X B
12 8 11 pm2.61i A × B X B