Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Power Sets
Operations
fvconstr2
Next ⟩
ZF Set Theory - add the Axiom of Union
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvconstr2
Description:
Two ways of expressing
A R B
.
(Contributed by
Zhi Wang
, 18-Sep-2024)
Ref
Expression
Hypotheses
fvconstr.1
⊢
φ
→
F
=
R
×
Y
fvconstr2.2
⊢
φ
→
X
∈
A
F
B
Assertion
fvconstr2
⊢
φ
→
A
R
B
Proof
Step
Hyp
Ref
Expression
1
fvconstr.1
⊢
φ
→
F
=
R
×
Y
2
fvconstr2.2
⊢
φ
→
X
∈
A
F
B
3
2
ne0d
⊢
φ
→
A
F
B
≠
∅
4
1
oveqd
⊢
φ
→
A
F
B
=
A
R
×
Y
B
5
df-ov
⊢
A
R
×
Y
B
=
R
×
Y
⁡
A
B
6
4
5
eqtrdi
⊢
φ
→
A
F
B
=
R
×
Y
⁡
A
B
7
6
neeq1d
⊢
φ
→
A
F
B
≠
∅
↔
R
×
Y
⁡
A
B
≠
∅
8
dmxpss
⊢
dom
⁡
R
×
Y
⊆
R
9
ndmfv
⊢
¬
A
B
∈
dom
⁡
R
×
Y
→
R
×
Y
⁡
A
B
=
∅
10
9
necon1ai
⊢
R
×
Y
⁡
A
B
≠
∅
→
A
B
∈
dom
⁡
R
×
Y
11
8
10
sselid
⊢
R
×
Y
⁡
A
B
≠
∅
→
A
B
∈
R
12
7
11
syl6bi
⊢
φ
→
A
F
B
≠
∅
→
A
B
∈
R
13
3
12
mpd
⊢
φ
→
A
B
∈
R
14
df-br
⊢
A
R
B
↔
A
B
∈
R
15
13
14
sylibr
⊢
φ
→
A
R
B