Metamath Proof Explorer


Theorem fvconstr2

Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses fvconstr.1 φ F = R × Y
fvconstr2.2 φ X A F B
Assertion fvconstr2 φ A R B

Proof

Step Hyp Ref Expression
1 fvconstr.1 φ F = R × Y
2 fvconstr2.2 φ X A F B
3 2 ne0d φ A F B
4 1 oveqd φ A F B = A R × Y B
5 df-ov A R × Y B = R × Y A B
6 4 5 eqtrdi φ A F B = R × Y A B
7 6 neeq1d φ A F B R × Y A B
8 dmxpss dom R × Y R
9 ndmfv ¬ A B dom R × Y R × Y A B =
10 9 necon1ai R × Y A B A B dom R × Y
11 8 10 sselid R × Y A B A B R
12 7 11 syl6bi φ A F B A B R
13 3 12 mpd φ A B R
14 df-br A R B A B R
15 13 14 sylibr φ A R B