Metamath Proof Explorer


Theorem fvcosymgeq

Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S = SymGrp N
gsmsymgrfix.b B = Base S
gsmsymgreq.z Z = SymGrp M
gsmsymgreq.p P = Base Z
gsmsymgreq.i I = N M
Assertion fvcosymgeq G B K P X I G X = K X n I F n = H n F G X = H K X

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S = SymGrp N
2 gsmsymgrfix.b B = Base S
3 gsmsymgreq.z Z = SymGrp M
4 gsmsymgreq.p P = Base Z
5 gsmsymgreq.i I = N M
6 1 2 symgbasf G B G : N N
7 6 ffnd G B G Fn N
8 3 4 symgbasf K P K : M M
9 8 ffnd K P K Fn M
10 7 9 anim12i G B K P G Fn N K Fn M
11 10 adantr G B K P X I G X = K X n I F n = H n G Fn N K Fn M
12 5 eleq2i X I X N M
13 12 biimpi X I X N M
14 13 3ad2ant1 X I G X = K X n I F n = H n X N M
15 14 adantl G B K P X I G X = K X n I F n = H n X N M
16 simpr2 G B K P X I G X = K X n I F n = H n G X = K X
17 1 2 symgbasf1o G B G : N 1-1 onto N
18 dff1o5 G : N 1-1 onto N G : N 1-1 N ran G = N
19 eqcom ran G = N N = ran G
20 19 biimpi ran G = N N = ran G
21 18 20 simplbiim G : N 1-1 onto N N = ran G
22 17 21 syl G B N = ran G
23 3 4 symgbasf1o K P K : M 1-1 onto M
24 dff1o5 K : M 1-1 onto M K : M 1-1 M ran K = M
25 eqcom ran K = M M = ran K
26 25 biimpi ran K = M M = ran K
27 24 26 simplbiim K : M 1-1 onto M M = ran K
28 23 27 syl K P M = ran K
29 22 28 ineqan12d G B K P N M = ran G ran K
30 5 29 eqtrid G B K P I = ran G ran K
31 30 raleqdv G B K P n I F n = H n n ran G ran K F n = H n
32 31 biimpcd n I F n = H n G B K P n ran G ran K F n = H n
33 32 3ad2ant3 X I G X = K X n I F n = H n G B K P n ran G ran K F n = H n
34 33 impcom G B K P X I G X = K X n I F n = H n n ran G ran K F n = H n
35 15 16 34 3jca G B K P X I G X = K X n I F n = H n X N M G X = K X n ran G ran K F n = H n
36 fvcofneq G Fn N K Fn M X N M G X = K X n ran G ran K F n = H n F G X = H K X
37 11 35 36 sylc G B K P X I G X = K X n I F n = H n F G X = H K X
38 37 ex G B K P X I G X = K X n I F n = H n F G X = H K X