Metamath Proof Explorer


Theorem fvdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f F = x B I × x
Assertion fvdiagfn I W X B F X = I × X

Proof

Step Hyp Ref Expression
1 fdiagfn.f F = x B I × x
2 sneq x = X x = X
3 2 xpeq2d x = X I × x = I × X
4 simpr I W X B X B
5 snex X V
6 xpexg I W X V I × X V
7 5 6 mpan2 I W I × X V
8 7 adantr I W X B I × X V
9 1 3 4 8 fvmptd3 I W X B F X = I × X