Metamath Proof Explorer


Theorem fvelima

Description: Function value in an image. Part of Theorem 4.4(iii) of Monk1 p. 42. (Contributed by NM, 29-Apr-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion fvelima Fun F A F B x B F x = A

Proof

Step Hyp Ref Expression
1 funbrfv Fun F x F A F x = A
2 1 reximdv Fun F x B x F A x B F x = A
3 elimag A F B A F B x B x F A
4 3 ibi A F B x B x F A
5 2 4 impel Fun F A F B x B F x = A