Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
fvelima2
Next ⟩
rnmptssbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvelima2
Description:
Function value in an image.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Assertion
fvelima2
⊢
F
Fn
A
∧
B
∈
F
C
→
∃
x
∈
A
∩
C
F
⁡
x
=
B
Proof
Step
Hyp
Ref
Expression
1
elimag
⊢
B
∈
F
C
→
B
∈
F
C
↔
∃
x
∈
C
x
F
B
2
1
ibi
⊢
B
∈
F
C
→
∃
x
∈
C
x
F
B
3
df-rex
⊢
∃
x
∈
C
x
F
B
↔
∃
x
x
∈
C
∧
x
F
B
4
2
3
sylib
⊢
B
∈
F
C
→
∃
x
x
∈
C
∧
x
F
B
5
fnbr
⊢
F
Fn
A
∧
x
F
B
→
x
∈
A
6
5
adantrl
⊢
F
Fn
A
∧
x
∈
C
∧
x
F
B
→
x
∈
A
7
simprl
⊢
F
Fn
A
∧
x
∈
C
∧
x
F
B
→
x
∈
C
8
6
7
elind
⊢
F
Fn
A
∧
x
∈
C
∧
x
F
B
→
x
∈
A
∩
C
9
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
10
funbrfv
⊢
Fun
⁡
F
→
x
F
B
→
F
⁡
x
=
B
11
10
imp
⊢
Fun
⁡
F
∧
x
F
B
→
F
⁡
x
=
B
12
9
11
sylan
⊢
F
Fn
A
∧
x
F
B
→
F
⁡
x
=
B
13
12
adantrl
⊢
F
Fn
A
∧
x
∈
C
∧
x
F
B
→
F
⁡
x
=
B
14
8
13
jca
⊢
F
Fn
A
∧
x
∈
C
∧
x
F
B
→
x
∈
A
∩
C
∧
F
⁡
x
=
B
15
14
ex
⊢
F
Fn
A
→
x
∈
C
∧
x
F
B
→
x
∈
A
∩
C
∧
F
⁡
x
=
B
16
15
eximdv
⊢
F
Fn
A
→
∃
x
x
∈
C
∧
x
F
B
→
∃
x
x
∈
A
∩
C
∧
F
⁡
x
=
B
17
16
imp
⊢
F
Fn
A
∧
∃
x
x
∈
C
∧
x
F
B
→
∃
x
x
∈
A
∩
C
∧
F
⁡
x
=
B
18
df-rex
⊢
∃
x
∈
A
∩
C
F
⁡
x
=
B
↔
∃
x
x
∈
A
∩
C
∧
F
⁡
x
=
B
19
17
18
sylibr
⊢
F
Fn
A
∧
∃
x
x
∈
C
∧
x
F
B
→
∃
x
∈
A
∩
C
F
⁡
x
=
B
20
4
19
sylan2
⊢
F
Fn
A
∧
B
∈
F
C
→
∃
x
∈
A
∩
C
F
⁡
x
=
B