Metamath Proof Explorer


Theorem fvelima2

Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion fvelima2 F Fn A B F C x A C F x = B

Proof

Step Hyp Ref Expression
1 elimag B F C B F C x C x F B
2 1 ibi B F C x C x F B
3 df-rex x C x F B x x C x F B
4 2 3 sylib B F C x x C x F B
5 fnbr F Fn A x F B x A
6 5 adantrl F Fn A x C x F B x A
7 simprl F Fn A x C x F B x C
8 6 7 elind F Fn A x C x F B x A C
9 fnfun F Fn A Fun F
10 funbrfv Fun F x F B F x = B
11 10 imp Fun F x F B F x = B
12 9 11 sylan F Fn A x F B F x = B
13 12 adantrl F Fn A x C x F B F x = B
14 8 13 jca F Fn A x C x F B x A C F x = B
15 14 ex F Fn A x C x F B x A C F x = B
16 15 eximdv F Fn A x x C x F B x x A C F x = B
17 16 imp F Fn A x x C x F B x x A C F x = B
18 df-rex x A C F x = B x x A C F x = B
19 17 18 sylibr F Fn A x x C x F B x A C F x = B
20 4 19 sylan2 F Fn A B F C x A C F x = B