Metamath Proof Explorer


Theorem fvelimabd

Description: Deduction form of fvelimab . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvelimabd.1 φ F Fn A
fvelimabd.2 φ B A
Assertion fvelimabd φ C F B x B F x = C

Proof

Step Hyp Ref Expression
1 fvelimabd.1 φ F Fn A
2 fvelimabd.2 φ B A
3 fvelimab F Fn A B A C F B x B F x = C
4 1 2 3 syl2anc φ C F B x B F x = C