Metamath Proof Explorer


Theorem fvelrnbf

Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fvelrnbf.1 _ x A
fvelrnbf.2 _ x B
fvelrnbf.3 _ x F
Assertion fvelrnbf F Fn A B ran F x A F x = B

Proof

Step Hyp Ref Expression
1 fvelrnbf.1 _ x A
2 fvelrnbf.2 _ x B
3 fvelrnbf.3 _ x F
4 fvelrnb F Fn A B ran F y A F y = B
5 nfcv _ y A
6 nfcv _ x y
7 3 6 nffv _ x F y
8 7 2 nfeq x F y = B
9 nfv y F x = B
10 fveqeq2 y = x F y = B F x = B
11 5 1 8 9 10 cbvrexfw y A F y = B x A F x = B
12 4 11 bitrdi F Fn A B ran F x A F x = B