Metamath Proof Explorer


Theorem fveqf1o

Description: Given a bijection F , produce another bijection G which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypothesis fveqf1o.1 G = F I A C F -1 D C F -1 D F -1 D C
Assertion fveqf1o F : A 1-1 onto B C A D B G : A 1-1 onto B G C = D

Proof

Step Hyp Ref Expression
1 fveqf1o.1 G = F I A C F -1 D C F -1 D F -1 D C
2 simp1 F : A 1-1 onto B C A D B F : A 1-1 onto B
3 f1oi I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D
4 3 a1i F : A 1-1 onto B C A D B I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D
5 simp2 F : A 1-1 onto B C A D B C A
6 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
7 f1of F -1 : B 1-1 onto A F -1 : B A
8 2 6 7 3syl F : A 1-1 onto B C A D B F -1 : B A
9 simp3 F : A 1-1 onto B C A D B D B
10 8 9 ffvelrnd F : A 1-1 onto B C A D B F -1 D A
11 f1oprswap C A F -1 D A C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D
12 5 10 11 syl2anc F : A 1-1 onto B C A D B C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D
13 disjdifr A C F -1 D C F -1 D =
14 13 a1i F : A 1-1 onto B C A D B A C F -1 D C F -1 D =
15 f1oun I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D A C F -1 D C F -1 D = A C F -1 D C F -1 D = I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D
16 4 12 14 14 15 syl22anc F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D
17 uncom A C F -1 D C F -1 D = C F -1 D A C F -1 D
18 5 10 prssd F : A 1-1 onto B C A D B C F -1 D A
19 undif C F -1 D A C F -1 D A C F -1 D = A
20 18 19 sylib F : A 1-1 onto B C A D B C F -1 D A C F -1 D = A
21 17 20 eqtrid F : A 1-1 onto B C A D B A C F -1 D C F -1 D = A
22 21 f1oeq2d F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D
23 16 22 mpbid F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D
24 21 f1oeq3d F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A
25 23 24 mpbid F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A
26 f1oco F : A 1-1 onto B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
27 2 25 26 syl2anc F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
28 f1oeq1 G = F I A C F -1 D C F -1 D F -1 D C G : A 1-1 onto B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
29 1 28 ax-mp G : A 1-1 onto B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
30 27 29 sylibr F : A 1-1 onto B C A D B G : A 1-1 onto B
31 1 fveq1i G C = F I A C F -1 D C F -1 D F -1 D C C
32 f1of I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A I A C F -1 D C F -1 D F -1 D C : A A
33 25 32 syl F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A A
34 fvco3 I A C F -1 D C F -1 D F -1 D C : A A C A F I A C F -1 D C F -1 D F -1 D C C = F I A C F -1 D C F -1 D F -1 D C C
35 33 5 34 syl2anc F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = F I A C F -1 D C F -1 D F -1 D C C
36 31 35 eqtrid F : A 1-1 onto B C A D B G C = F I A C F -1 D C F -1 D F -1 D C C
37 fnresi I A C F -1 D Fn A C F -1 D
38 37 a1i F : A 1-1 onto B C A D B I A C F -1 D Fn A C F -1 D
39 f1ofn C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D C F -1 D F -1 D C Fn C F -1 D
40 12 39 syl F : A 1-1 onto B C A D B C F -1 D F -1 D C Fn C F -1 D
41 prid1g C A C C F -1 D
42 5 41 syl F : A 1-1 onto B C A D B C C F -1 D
43 fvun2 I A C F -1 D Fn A C F -1 D C F -1 D F -1 D C Fn C F -1 D A C F -1 D C F -1 D = C C F -1 D I A C F -1 D C F -1 D F -1 D C C = C F -1 D F -1 D C C
44 38 40 14 42 43 syl112anc F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C C = C F -1 D F -1 D C C
45 f1ofun C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D Fun C F -1 D F -1 D C
46 12 45 syl F : A 1-1 onto B C A D B Fun C F -1 D F -1 D C
47 opex C F -1 D V
48 47 prid1 C F -1 D C F -1 D F -1 D C
49 funopfv Fun C F -1 D F -1 D C C F -1 D C F -1 D F -1 D C C F -1 D F -1 D C C = F -1 D
50 46 48 49 mpisyl F : A 1-1 onto B C A D B C F -1 D F -1 D C C = F -1 D
51 44 50 eqtrd F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C C = F -1 D
52 51 fveq2d F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = F F -1 D
53 f1ocnvfv2 F : A 1-1 onto B D B F F -1 D = D
54 2 9 53 syl2anc F : A 1-1 onto B C A D B F F -1 D = D
55 52 54 eqtrd F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = D
56 36 55 eqtrd F : A 1-1 onto B C A D B G C = D
57 30 56 jca F : A 1-1 onto B C A D B G : A 1-1 onto B G C = D