Metamath Proof Explorer


Theorem fveqf1o

Description: Given a bijection F , produce another bijection G which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypothesis fveqf1o.1 G = F I A C F -1 D C F -1 D F -1 D C
Assertion fveqf1o F : A 1-1 onto B C A D B G : A 1-1 onto B G C = D

Proof

Step Hyp Ref Expression
1 fveqf1o.1 G = F I A C F -1 D C F -1 D F -1 D C
2 simp1 F : A 1-1 onto B C A D B F : A 1-1 onto B
3 f1oi I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D
4 3 a1i F : A 1-1 onto B C A D B I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D
5 simp2 F : A 1-1 onto B C A D B C A
6 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
7 f1of F -1 : B 1-1 onto A F -1 : B A
8 2 6 7 3syl F : A 1-1 onto B C A D B F -1 : B A
9 simp3 F : A 1-1 onto B C A D B D B
10 8 9 ffvelrnd F : A 1-1 onto B C A D B F -1 D A
11 f1oprswap C A F -1 D A C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D
12 5 10 11 syl2anc F : A 1-1 onto B C A D B C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D
13 incom A C F -1 D C F -1 D = C F -1 D A C F -1 D
14 disjdif C F -1 D A C F -1 D =
15 13 14 eqtri A C F -1 D C F -1 D =
16 15 a1i F : A 1-1 onto B C A D B A C F -1 D C F -1 D =
17 f1oun I A C F -1 D : A C F -1 D 1-1 onto A C F -1 D C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D A C F -1 D C F -1 D = A C F -1 D C F -1 D = I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D
18 4 12 16 16 17 syl22anc F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D
19 uncom A C F -1 D C F -1 D = C F -1 D A C F -1 D
20 5 10 prssd F : A 1-1 onto B C A D B C F -1 D A
21 undif C F -1 D A C F -1 D A C F -1 D = A
22 20 21 sylib F : A 1-1 onto B C A D B C F -1 D A C F -1 D = A
23 19 22 syl5eq F : A 1-1 onto B C A D B A C F -1 D C F -1 D = A
24 23 f1oeq2d F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A C F -1 D C F -1 D 1-1 onto A C F -1 D C F -1 D I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D
25 18 24 mpbid F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D
26 23 f1oeq3d F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A C F -1 D C F -1 D I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A
27 25 26 mpbid F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A
28 f1oco F : A 1-1 onto B I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
29 2 27 28 syl2anc F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
30 f1oeq1 G = F I A C F -1 D C F -1 D F -1 D C G : A 1-1 onto B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
31 1 30 ax-mp G : A 1-1 onto B F I A C F -1 D C F -1 D F -1 D C : A 1-1 onto B
32 29 31 sylibr F : A 1-1 onto B C A D B G : A 1-1 onto B
33 1 fveq1i G C = F I A C F -1 D C F -1 D F -1 D C C
34 f1of I A C F -1 D C F -1 D F -1 D C : A 1-1 onto A I A C F -1 D C F -1 D F -1 D C : A A
35 27 34 syl F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C : A A
36 fvco3 I A C F -1 D C F -1 D F -1 D C : A A C A F I A C F -1 D C F -1 D F -1 D C C = F I A C F -1 D C F -1 D F -1 D C C
37 35 5 36 syl2anc F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = F I A C F -1 D C F -1 D F -1 D C C
38 33 37 syl5eq F : A 1-1 onto B C A D B G C = F I A C F -1 D C F -1 D F -1 D C C
39 fnresi I A C F -1 D Fn A C F -1 D
40 39 a1i F : A 1-1 onto B C A D B I A C F -1 D Fn A C F -1 D
41 f1ofn C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D C F -1 D F -1 D C Fn C F -1 D
42 12 41 syl F : A 1-1 onto B C A D B C F -1 D F -1 D C Fn C F -1 D
43 prid1g C A C C F -1 D
44 5 43 syl F : A 1-1 onto B C A D B C C F -1 D
45 fvun2 I A C F -1 D Fn A C F -1 D C F -1 D F -1 D C Fn C F -1 D A C F -1 D C F -1 D = C C F -1 D I A C F -1 D C F -1 D F -1 D C C = C F -1 D F -1 D C C
46 40 42 16 44 45 syl112anc F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C C = C F -1 D F -1 D C C
47 f1ofun C F -1 D F -1 D C : C F -1 D 1-1 onto C F -1 D Fun C F -1 D F -1 D C
48 12 47 syl F : A 1-1 onto B C A D B Fun C F -1 D F -1 D C
49 opex C F -1 D V
50 49 prid1 C F -1 D C F -1 D F -1 D C
51 funopfv Fun C F -1 D F -1 D C C F -1 D C F -1 D F -1 D C C F -1 D F -1 D C C = F -1 D
52 48 50 51 mpisyl F : A 1-1 onto B C A D B C F -1 D F -1 D C C = F -1 D
53 46 52 eqtrd F : A 1-1 onto B C A D B I A C F -1 D C F -1 D F -1 D C C = F -1 D
54 53 fveq2d F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = F F -1 D
55 f1ocnvfv2 F : A 1-1 onto B D B F F -1 D = D
56 2 9 55 syl2anc F : A 1-1 onto B C A D B F F -1 D = D
57 54 56 eqtrd F : A 1-1 onto B C A D B F I A C F -1 D C F -1 D F -1 D C C = D
58 38 57 eqtrd F : A 1-1 onto B C A D B G C = D
59 32 58 jca F : A 1-1 onto B C A D B G : A 1-1 onto B G C = D