Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fveqres
Next ⟩
csbfv12
Metamath Proof Explorer
Ascii
Unicode
Theorem
fveqres
Description:
Equal values imply equal values in a restriction.
(Contributed by
NM
, 13-Nov-1995)
Ref
Expression
Assertion
fveqres
⊢
F
⁡
A
=
G
⁡
A
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A
Proof
Step
Hyp
Ref
Expression
1
fvres
⊢
A
∈
B
→
F
↾
B
⁡
A
=
F
⁡
A
2
fvres
⊢
A
∈
B
→
G
↾
B
⁡
A
=
G
⁡
A
3
1
2
eqeq12d
⊢
A
∈
B
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A
↔
F
⁡
A
=
G
⁡
A
4
3
biimprd
⊢
A
∈
B
→
F
⁡
A
=
G
⁡
A
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A
5
nfvres
⊢
¬
A
∈
B
→
F
↾
B
⁡
A
=
∅
6
nfvres
⊢
¬
A
∈
B
→
G
↾
B
⁡
A
=
∅
7
5
6
eqtr4d
⊢
¬
A
∈
B
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A
8
7
a1d
⊢
¬
A
∈
B
→
F
⁡
A
=
G
⁡
A
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A
9
4
8
pm2.61i
⊢
F
⁡
A
=
G
⁡
A
→
F
↾
B
⁡
A
=
G
↾
B
⁡
A