Metamath Proof Explorer


Theorem fveqres

Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion fveqres F A = G A F B A = G B A

Proof

Step Hyp Ref Expression
1 fvres A B F B A = F A
2 fvres A B G B A = G A
3 1 2 eqeq12d A B F B A = G B A F A = G A
4 3 biimprd A B F A = G A F B A = G B A
5 nfvres ¬ A B F B A =
6 nfvres ¬ A B G B A =
7 5 6 eqtr4d ¬ A B F B A = G B A
8 7 a1d ¬ A B F A = G A F B A = G B A
9 4 8 pm2.61i F A = G A F B A = G B A