Metamath Proof Explorer


Theorem fveu

Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017)

Ref Expression
Assertion fveu ∃! x A F x F A = x | A F x

Proof

Step Hyp Ref Expression
1 df-fv F A = ι x | A F x
2 iotauni ∃! x A F x ι x | A F x = x | A F x
3 1 2 eqtrid ∃! x A F x F A = x | A F x