Metamath Proof Explorer


Theorem fveval1fvcl

Description: The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses fveval1fvcl.q O = eval 1 R
fveval1fvcl.p P = Poly 1 R
fveval1fvcl.b B = Base R
fveval1fvcl.u U = Base P
fveval1fvcl.r φ R CRing
fveval1fvcl.y φ Y B
fveval1fvcl.m φ M U
Assertion fveval1fvcl φ O M Y B

Proof

Step Hyp Ref Expression
1 fveval1fvcl.q O = eval 1 R
2 fveval1fvcl.p P = Poly 1 R
3 fveval1fvcl.b B = Base R
4 fveval1fvcl.u U = Base P
5 fveval1fvcl.r φ R CRing
6 fveval1fvcl.y φ Y B
7 fveval1fvcl.m φ M U
8 eqid R 𝑠 B = R 𝑠 B
9 eqid Base R 𝑠 B = Base R 𝑠 B
10 3 fvexi B V
11 10 a1i φ B V
12 1 2 8 3 evl1rhm R CRing O P RingHom R 𝑠 B
13 4 9 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
14 5 12 13 3syl φ O : U Base R 𝑠 B
15 14 7 ffvelrnd φ O M Base R 𝑠 B
16 8 3 9 5 11 15 pwselbas φ O M : B B
17 16 6 ffvelrnd φ O M Y B