Metamath Proof Explorer


Theorem fvf1pr

Description: Values of a one-to-one function between two sets with two elements. Actually, such a function is a bijection. (Contributed by AV, 22-Jul-2025)

Ref Expression
Assertion fvf1pr A V B W A B F : A B 1-1 X Y F A = X F B = Y F A = Y F B = X

Proof

Step Hyp Ref Expression
1 f1f F : A B 1-1 X Y F : A B X Y
2 prid1g A V A A B
3 2 3ad2ant1 A V B W A B A A B
4 ffvelcdm F : A B X Y A A B F A X Y
5 1 3 4 syl2anr A V B W A B F : A B 1-1 X Y F A X Y
6 prid2g B W B A B
7 6 3ad2ant2 A V B W A B B A B
8 ffvelcdm F : A B X Y B A B F B X Y
9 1 7 8 syl2anr A V B W A B F : A B 1-1 X Y F B X Y
10 elpri F A X Y F A = X F A = Y
11 elpri F B X Y F B = X F B = Y
12 eqtr3 F A = X F B = X F A = F B
13 3 7 jca A V B W A B A A B B A B
14 f1veqaeq F : A B 1-1 X Y A A B B A B F A = F B A = B
15 13 14 sylan2 F : A B 1-1 X Y A V B W A B F A = F B A = B
16 12 15 syl5 F : A B 1-1 X Y A V B W A B F A = X F B = X A = B
17 16 ex F : A B 1-1 X Y A V B W A B F A = X F B = X A = B
18 eqneqall A = B A B F A = X F B = Y F A = Y F B = X
19 18 com12 A B A = B F A = X F B = Y F A = Y F B = X
20 19 3ad2ant3 A V B W A B A = B F A = X F B = Y F A = Y F B = X
21 20 a1i F : A B 1-1 X Y A V B W A B A = B F A = X F B = Y F A = Y F B = X
22 17 21 syldd F : A B 1-1 X Y A V B W A B F A = X F B = X F A = X F B = Y F A = Y F B = X
23 22 impcom A V B W A B F : A B 1-1 X Y F A = X F B = X F A = X F B = Y F A = Y F B = X
24 olc F A = Y F B = X F A = X F B = Y F A = Y F B = X
25 24 a1i A V B W A B F : A B 1-1 X Y F A = Y F B = X F A = X F B = Y F A = Y F B = X
26 orc F A = X F B = Y F A = X F B = Y F A = Y F B = X
27 26 a1i A V B W A B F : A B 1-1 X Y F A = X F B = Y F A = X F B = Y F A = Y F B = X
28 eqtr3 F A = Y F B = Y F A = F B
29 28 15 syl5 F : A B 1-1 X Y A V B W A B F A = Y F B = Y A = B
30 29 ex F : A B 1-1 X Y A V B W A B F A = Y F B = Y A = B
31 30 21 syldd F : A B 1-1 X Y A V B W A B F A = Y F B = Y F A = X F B = Y F A = Y F B = X
32 31 impcom A V B W A B F : A B 1-1 X Y F A = Y F B = Y F A = X F B = Y F A = Y F B = X
33 23 25 27 32 ccased A V B W A B F : A B 1-1 X Y F A = X F A = Y F B = X F B = Y F A = X F B = Y F A = Y F B = X
34 10 11 33 syl2ani A V B W A B F : A B 1-1 X Y F A X Y F B X Y F A = X F B = Y F A = Y F B = X
35 5 9 34 mp2and A V B W A B F : A B 1-1 X Y F A = X F B = Y F A = Y F B = X