Metamath Proof Explorer


Theorem fvif

Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fvif F if φ A B = if φ F A F B

Proof

Step Hyp Ref Expression
1 fveq2 if φ A B = A F if φ A B = F A
2 fveq2 if φ A B = B F if φ A B = F B
3 1 2 ifsb F if φ A B = if φ F A F B