Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvif
Next ⟩
iffv
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvif
Description:
Move a conditional outside of a function.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
fvif
⊢
F
⁡
if
φ
A
B
=
if
φ
F
⁡
A
F
⁡
B
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
if
φ
A
B
=
A
→
F
⁡
if
φ
A
B
=
F
⁡
A
2
fveq2
⊢
if
φ
A
B
=
B
→
F
⁡
if
φ
A
B
=
F
⁡
B
3
1
2
ifsb
⊢
F
⁡
if
φ
A
B
=
if
φ
F
⁡
A
F
⁡
B