Metamath Proof Explorer


Theorem fvixp

Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis fvixp.1 x = C B = D
Assertion fvixp F x A B C A F C D

Proof

Step Hyp Ref Expression
1 fvixp.1 x = C B = D
2 elixp2 F x A B F V F Fn A x A F x B
3 2 simp3bi F x A B x A F x B
4 fveq2 x = C F x = F C
5 4 1 eleq12d x = C F x B F C D
6 5 rspccva x A F x B C A F C D
7 3 6 sylan F x A B C A F C D