Metamath Proof Explorer


Theorem fvixp2

Description: Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion fvixp2 F x A B x A F x B

Proof

Step Hyp Ref Expression
1 elixp2 F x A B F V F Fn A x A F x B
2 1 simp3bi F x A B x A F x B
3 2 r19.21bi F x A B x A F x B