Metamath Proof Explorer


Theorem fvmpopr2d

Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses fvmpopr2d.1 φ F = a A , b B C
fvmpopr2d.2 φ P = a b
fvmpopr2d.3 φ a A b B C V
Assertion fvmpopr2d φ a A b B F P = C

Proof

Step Hyp Ref Expression
1 fvmpopr2d.1 φ F = a A , b B C
2 fvmpopr2d.2 φ P = a b
3 fvmpopr2d.3 φ a A b B C V
4 df-ov a a A , b B C b = a A , b B C a b
5 1 3ad2ant1 φ a A b B F = a A , b B C
6 2 3ad2ant1 φ a A b B P = a b
7 5 6 fveq12d φ a A b B F P = a A , b B C a b
8 4 7 eqtr4id φ a A b B a a A , b B C b = F P
9 nfcv _ c C
10 nfcv _ d C
11 nfcv _ a d
12 nfcsb1v _ a c / a C
13 11 12 nfcsbw _ a d / b c / a C
14 nfcsb1v _ b d / b c / a C
15 csbeq1a a = c C = c / a C
16 csbeq1a b = d c / a C = d / b c / a C
17 15 16 sylan9eq a = c b = d C = d / b c / a C
18 9 10 13 14 17 cbvmpo a A , b B C = c A , d B d / b c / a C
19 18 oveqi a a A , b B C b = a c A , d B d / b c / a C b
20 eqidd φ a A b B c A , d B d / b c / a C = c A , d B d / b c / a C
21 equcom a = c c = a
22 equcom b = d d = b
23 21 22 anbi12i a = c b = d c = a d = b
24 23 17 sylbir c = a d = b C = d / b c / a C
25 24 eqcomd c = a d = b d / b c / a C = C
26 25 adantl φ a A b B c = a d = b d / b c / a C = C
27 simp2 φ a A b B a A
28 simp3 φ a A b B b B
29 20 26 27 28 3 ovmpod φ a A b B a c A , d B d / b c / a C b = C
30 19 29 eqtrid φ a A b B a a A , b B C b = C
31 8 30 eqtr3d φ a A b B F P = C