Metamath Proof Explorer


Theorem fvmpt2bd

Description: Value of a function given by the maps-to notation. Deduction version. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fvmpt2bd.1 φ F = x A B
Assertion fvmpt2bd φ x A B C F x = B

Proof

Step Hyp Ref Expression
1 fvmpt2bd.1 φ F = x A B
2 1 fveq1d φ F x = x A B x
3 2 3ad2ant1 φ x A B C F x = x A B x
4 eqid x A B = x A B
5 4 fvmpt2 x A B C x A B x = B
6 5 3adant1 φ x A B C x A B x = B
7 3 6 eqtrd φ x A B C F x = B