Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmpt2d
Next ⟩
fvmptex
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvmpt2d
Description:
Deduction version of
fvmpt2
.
(Contributed by
Thierry Arnoux
, 8-Dec-2016)
Ref
Expression
Hypotheses
fvmpt2d.1
⊢
φ
→
F
=
x
∈
A
⟼
B
fvmpt2d.4
⊢
φ
∧
x
∈
A
→
B
∈
V
Assertion
fvmpt2d
⊢
φ
∧
x
∈
A
→
F
⁡
x
=
B
Proof
Step
Hyp
Ref
Expression
1
fvmpt2d.1
⊢
φ
→
F
=
x
∈
A
⟼
B
2
fvmpt2d.4
⊢
φ
∧
x
∈
A
→
B
∈
V
3
1
fveq1d
⊢
φ
→
F
⁡
x
=
x
∈
A
⟼
B
⁡
x
4
3
adantr
⊢
φ
∧
x
∈
A
→
F
⁡
x
=
x
∈
A
⟼
B
⁡
x
5
id
⊢
x
∈
A
→
x
∈
A
6
eqid
⊢
x
∈
A
⟼
B
=
x
∈
A
⟼
B
7
6
fvmpt2
⊢
x
∈
A
∧
B
∈
V
→
x
∈
A
⟼
B
⁡
x
=
B
8
5
2
7
syl2an2
⊢
φ
∧
x
∈
A
→
x
∈
A
⟼
B
⁡
x
=
B
9
4
8
eqtrd
⊢
φ
∧
x
∈
A
→
F
⁡
x
=
B