Metamath Proof Explorer


Theorem fvmpt2d

Description: Deduction version of fvmpt2 . (Contributed by Thierry Arnoux, 8-Dec-2016)

Ref Expression
Hypotheses fvmpt2d.1 φ F = x A B
fvmpt2d.4 φ x A B V
Assertion fvmpt2d φ x A F x = B

Proof

Step Hyp Ref Expression
1 fvmpt2d.1 φ F = x A B
2 fvmpt2d.4 φ x A B V
3 1 fveq1d φ F x = x A B x
4 3 adantr φ x A F x = x A B x
5 id x A x A
6 eqid x A B = x A B
7 6 fvmpt2 x A B V x A B x = B
8 5 2 7 syl2an2 φ x A x A B x = B
9 4 8 eqtrd φ x A F x = B