Metamath Proof Explorer


Theorem fvmpt2df

Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses fvmpt2df.1 _ x A
fvmpt2df.2 F = x A B
fvmpt2df.3 φ x A B V
Assertion fvmpt2df φ x A F x = B

Proof

Step Hyp Ref Expression
1 fvmpt2df.1 _ x A
2 fvmpt2df.2 F = x A B
3 fvmpt2df.3 φ x A B V
4 2 fveq1i F x = x A B x
5 id x A x A
6 1 fvmpt2f x A B V x A B x = B
7 5 3 6 syl2an2 φ x A x A B x = B
8 4 7 eqtrid φ x A F x = B