Metamath Proof Explorer


Theorem fvmpt3

Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses fvmpt3.a x=AB=C
fvmpt3.b F=xDB
fvmpt3.c xDBV
Assertion fvmpt3 ADFA=C

Proof

Step Hyp Ref Expression
1 fvmpt3.a x=AB=C
2 fvmpt3.b F=xDB
3 fvmpt3.c xDBV
4 1 eleq1d x=ABVCV
5 4 3 vtoclga ADCV
6 1 2 fvmptg ADCVFA=C
7 5 6 mpdan ADFA=C