Metamath Proof Explorer


Theorem fvmpt4d

Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses fvmpt4d.1 _ x A
fvmpt4d.2 φ B C
fvmpt4d.3 φ x A
Assertion fvmpt4d φ x A B x = B

Proof

Step Hyp Ref Expression
1 fvmpt4d.1 _ x A
2 fvmpt4d.2 φ B C
3 fvmpt4d.3 φ x A
4 1 fvmpt2f x A B C x A B x = B
5 3 2 4 syl2anc φ x A B x = B