Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions fvmptd  
				
		 
		
			
		 
		Description:   Deduction version of fvmpt  .  (Contributed by Scott Fenton , 18-Feb-2013)   (Revised by Mario Carneiro , 31-Aug-2015)   (Proof
       shortened by AV , 29-Mar-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fvmptd.1    ⊢   φ   →   F  =    x  ∈  D  ⟼  B            
					 
					
						fvmptd.2    ⊢    φ   ∧   x  =  A     →   B  =  C         
					 
					
						fvmptd.3    ⊢   φ   →   A  ∈  D         
					 
					
						fvmptd.4    ⊢   φ   →   C  ∈  V         
					 
				
					Assertion 
					fvmptd    ⊢   φ   →    F  ⁡  A   =  C         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fvmptd.1   ⊢   φ   →   F  =    x  ∈  D  ⟼  B            
						
							2 
								
							 
							fvmptd.2   ⊢    φ   ∧   x  =  A     →   B  =  C         
						
							3 
								
							 
							fvmptd.3   ⊢   φ   →   A  ∈  D         
						
							4 
								
							 
							fvmptd.4   ⊢   φ   →   C  ∈  V         
						
							5 
								
							 
							nfv  ⊢   Ⅎ  x   φ        
						
							6 
								
							 
							nfcv  ⊢    Ⅎ   _  x  A       
						
							7 
								
							 
							nfcv  ⊢    Ⅎ   _  x  C       
						
							8 
								1  2  3  4  5  6  7 
							 
							fvmptdf   ⊢   φ   →    F  ⁡  A   =  C