Metamath Proof Explorer


Theorem fvmptd2

Description: Deduction version of fvmpt (where the definition of the mapping does not depend on the common antecedent ph ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd2.1 F = x D B
fvmptd2.2 φ x = A B = C
fvmptd2.3 φ A D
fvmptd2.4 φ C V
Assertion fvmptd2 φ F A = C

Proof

Step Hyp Ref Expression
1 fvmptd2.1 F = x D B
2 fvmptd2.2 φ x = A B = C
3 fvmptd2.3 φ A D
4 fvmptd2.4 φ C V
5 1 a1i φ F = x D B
6 5 2 3 4 fvmptd φ F A = C