Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmptd2f
Metamath Proof Explorer
Description: Alternate deduction version of fvmpt , suitable for iteration.
(Contributed by Mario Carneiro , 7-Jan-2017) (Proof shortened by AV , 19-Jan-2022)
Ref
Expression
Hypotheses
fvmptd2f.1
⊢ φ → A ∈ D
fvmptd2f.2
⊢ φ ∧ x = A → B ∈ V
fvmptd2f.3
⊢ φ ∧ x = A → F ⁡ A = B → ψ
fvmptd2f.4
⊢ Ⅎ _ x F
fvmptd2f.5
⊢ Ⅎ x ψ
Assertion
fvmptd2f
⊢ φ → F = x ∈ D ⟼ B → ψ
Proof
Step
Hyp
Ref
Expression
1
fvmptd2f.1
⊢ φ → A ∈ D
2
fvmptd2f.2
⊢ φ ∧ x = A → B ∈ V
3
fvmptd2f.3
⊢ φ ∧ x = A → F ⁡ A = B → ψ
4
fvmptd2f.4
⊢ Ⅎ _ x F
5
fvmptd2f.5
⊢ Ⅎ x ψ
6
nfv
⊢ Ⅎ x φ
7
1 2 3 4 5 6
fvmptd3f
⊢ φ → F = x ∈ D ⟼ B → ψ