Metamath Proof Explorer


Theorem fvmptd2f

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017) (Proof shortened by AV, 19-Jan-2022)

Ref Expression
Hypotheses fvmptd2f.1 φ A D
fvmptd2f.2 φ x = A B V
fvmptd2f.3 φ x = A F A = B ψ
fvmptd2f.4 _ x F
fvmptd2f.5 x ψ
Assertion fvmptd2f φ F = x D B ψ

Proof

Step Hyp Ref Expression
1 fvmptd2f.1 φ A D
2 fvmptd2f.2 φ x = A B V
3 fvmptd2f.3 φ x = A F A = B ψ
4 fvmptd2f.4 _ x F
5 fvmptd2f.5 x ψ
6 nfv x φ
7 1 2 3 4 5 6 fvmptd3f φ F = x D B ψ