Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions fvmptd2f  
				
		 
		
			
		 
		Description:   Alternate deduction version of fvmpt  , suitable for iteration.
         (Contributed by Mario Carneiro , 7-Jan-2017)   (Proof shortened by AV , 19-Jan-2022) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fvmptd2f.1    ⊢   φ   →   A  ∈  D         
					 
					
						fvmptd2f.2    ⊢    φ   ∧   x  =  A     →   B  ∈  V         
					 
					
						fvmptd2f.3    ⊢    φ   ∧   x  =  A     →     F  ⁡  A   =  B    →   ψ         
					 
					
						fvmptd2f.4   ⊢    Ⅎ   _  x  F       
					 
					
						fvmptd2f.5   ⊢   Ⅎ  x   ψ        
					 
				
					Assertion 
					fvmptd2f    ⊢   φ   →    F  =    x  ∈  D  ⟼  B       →   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fvmptd2f.1   ⊢   φ   →   A  ∈  D         
						
							2 
								
							 
							fvmptd2f.2   ⊢    φ   ∧   x  =  A     →   B  ∈  V         
						
							3 
								
							 
							fvmptd2f.3   ⊢    φ   ∧   x  =  A     →     F  ⁡  A   =  B    →   ψ         
						
							4 
								
							 
							fvmptd2f.4  ⊢    Ⅎ   _  x  F       
						
							5 
								
							 
							fvmptd2f.5  ⊢   Ⅎ  x   ψ        
						
							6 
								
							 
							nfv  ⊢   Ⅎ  x   φ        
						
							7 
								1  2  3  4  5  6 
							 
							fvmptd3f   ⊢   φ   →    F  =    x  ∈  D  ⟼  B       →   ψ