Metamath Proof Explorer


Theorem fvmptd3

Description: Deduction version of fvmpt . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd3.1 F = x D B
fvmptd3.2 x = A B = C
fvmptd3.3 φ A D
fvmptd3.4 φ C V
Assertion fvmptd3 φ F A = C

Proof

Step Hyp Ref Expression
1 fvmptd3.1 F = x D B
2 fvmptd3.2 x = A B = C
3 fvmptd3.3 φ A D
4 fvmptd3.4 φ C V
5 2 1 fvmptg A D C V F A = C
6 3 4 5 syl2anc φ F A = C