Metamath Proof Explorer


Theorem fvmptdv

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses fvmptd2f.1 φ A D
fvmptd2f.2 φ x = A B V
fvmptd2f.3 φ x = A F A = B ψ
Assertion fvmptdv φ F = x D B ψ

Proof

Step Hyp Ref Expression
1 fvmptd2f.1 φ A D
2 fvmptd2f.2 φ x = A B V
3 fvmptd2f.3 φ x = A F A = B ψ
4 nfcv _ x F
5 nfv x ψ
6 1 2 3 4 5 fvmptd2f φ F = x D B ψ