Metamath Proof Explorer


Theorem fvmptdv2

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses fvmptdv2.1 φ A D
fvmptdv2.2 φ x = A B V
fvmptdv2.3 φ x = A B = C
Assertion fvmptdv2 φ F = x D B F A = C

Proof

Step Hyp Ref Expression
1 fvmptdv2.1 φ A D
2 fvmptdv2.2 φ x = A B V
3 fvmptdv2.3 φ x = A B = C
4 eqidd φ x D B = x D B
5 1 elexd φ A V
6 isset A V x x = A
7 5 6 sylib φ x x = A
8 2 elexd φ x = A B V
9 3 8 eqeltrrd φ x = A C V
10 7 9 exlimddv φ C V
11 4 3 1 10 fvmptd φ x D B A = C
12 fveq1 F = x D B F A = x D B A
13 12 eqeq1d F = x D B F A = C x D B A = C
14 11 13 syl5ibrcom φ F = x D B F A = C