Metamath Proof Explorer


Theorem fvmptelcdmf

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fvmptelcdmf.a _ x A
fvmptelcdmf.c _ x C
fvmptelcdmf.f φ x A B : A C
Assertion fvmptelcdmf φ x A B C

Proof

Step Hyp Ref Expression
1 fvmptelcdmf.a _ x A
2 fvmptelcdmf.c _ x C
3 fvmptelcdmf.f φ x A B : A C
4 eqid x A B = x A B
5 1 2 4 fmptff x A B C x A B : A C
6 3 5 sylibr φ x A B C
7 6 r19.21bi φ x A B C