Metamath Proof Explorer


Theorem fvmptelrn

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis fvmptelrn.1 φ x A B : A C
Assertion fvmptelrn φ x A B C

Proof

Step Hyp Ref Expression
1 fvmptelrn.1 φ x A B : A C
2 eqid x A B = x A B
3 2 fmpt x A B C x A B : A C
4 1 3 sylibr φ x A B C
5 4 r19.21bi φ x A B C