Metamath Proof Explorer


Theorem fvmptex

Description: Express a function F whose value B may not always be a set in terms of another function G for which sethood is guaranteed. (Note that (IB ) is just shorthand for if ( B e. V , B , (/) ) , and it is always a set by fvex .) Note also that these functions are not the same; wherever B ( C ) is not a set, C is not in the domain of F (so it evaluates to the empty set), but C is in the domain of G , and G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fvmptex.1 F = x A B
fvmptex.2 G = x A I B
Assertion fvmptex F C = G C

Proof

Step Hyp Ref Expression
1 fvmptex.1 F = x A B
2 fvmptex.2 G = x A I B
3 csbeq1 y = C y / x B = C / x B
4 nfcv _ y B
5 nfcsb1v _ x y / x B
6 csbeq1a x = y B = y / x B
7 4 5 6 cbvmpt x A B = y A y / x B
8 1 7 eqtri F = y A y / x B
9 3 8 fvmpti C A F C = I C / x B
10 3 fveq2d y = C I y / x B = I C / x B
11 nfcv _ y I B
12 nfcv _ x I
13 12 5 nffv _ x I y / x B
14 6 fveq2d x = y I B = I y / x B
15 11 13 14 cbvmpt x A I B = y A I y / x B
16 2 15 eqtri G = y A I y / x B
17 fvex I C / x B V
18 10 16 17 fvmpt C A G C = I C / x B
19 9 18 eqtr4d C A F C = G C
20 1 dmmptss dom F A
21 20 sseli C dom F C A
22 ndmfv ¬ C dom F F C =
23 21 22 nsyl5 ¬ C A F C =
24 fvex I B V
25 24 2 dmmpti dom G = A
26 25 eleq2i C dom G C A
27 ndmfv ¬ C dom G G C =
28 26 27 sylnbir ¬ C A G C =
29 23 28 eqtr4d ¬ C A F C = G C
30 19 29 pm2.61i F C = G C