Metamath Proof Explorer


Theorem fvmptf

Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses fvmptf.1 _ x A
fvmptf.2 _ x C
fvmptf.3 x = A B = C
fvmptf.4 F = x D B
Assertion fvmptf A D C V F A = C

Proof

Step Hyp Ref Expression
1 fvmptf.1 _ x A
2 fvmptf.2 _ x C
3 fvmptf.3 x = A B = C
4 fvmptf.4 F = x D B
5 2 nfel1 x C V
6 nfmpt1 _ x x D B
7 4 6 nfcxfr _ x F
8 7 1 nffv _ x F A
9 8 2 nfeq x F A = C
10 5 9 nfim x C V F A = C
11 3 eleq1d x = A B V C V
12 fveq2 x = A F x = F A
13 12 3 eqeq12d x = A F x = B F A = C
14 11 13 imbi12d x = A B V F x = B C V F A = C
15 4 fvmpt2 x D B V F x = B
16 15 ex x D B V F x = B
17 1 10 14 16 vtoclgaf A D C V F A = C
18 elex C V C V
19 17 18 impel A D C V F A = C