Metamath Proof Explorer


Theorem fvmpti

Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fvmptg.1 x = A B = C
fvmptg.2 F = x D B
Assertion fvmpti A D F A = I C

Proof

Step Hyp Ref Expression
1 fvmptg.1 x = A B = C
2 fvmptg.2 F = x D B
3 1 2 fvmptg A D C V F A = C
4 fvi C V I C = C
5 4 adantl A D C V I C = C
6 3 5 eqtr4d A D C V F A = I C
7 1 eleq1d x = A B V C V
8 2 dmmpt dom F = x D | B V
9 7 8 elrab2 A dom F A D C V
10 9 baib A D A dom F C V
11 10 notbid A D ¬ A dom F ¬ C V
12 ndmfv ¬ A dom F F A =
13 11 12 syl6bir A D ¬ C V F A =
14 13 imp A D ¬ C V F A =
15 fvprc ¬ C V I C =
16 15 adantl A D ¬ C V I C =
17 14 16 eqtr4d A D ¬ C V F A = I C
18 6 17 pm2.61dan A D F A = I C