Metamath Proof Explorer


Theorem fvmptmap

Description: Special case of fvmpt for operator theorems. (Contributed by NM, 27-Nov-2007)

Ref Expression
Hypotheses fvmptmap.1 C V
fvmptmap.2 D V
fvmptmap.3 R V
fvmptmap.4 x = A B = C
fvmptmap.5 F = x R D B
Assertion fvmptmap A : D R F A = C

Proof

Step Hyp Ref Expression
1 fvmptmap.1 C V
2 fvmptmap.2 D V
3 fvmptmap.3 R V
4 fvmptmap.4 x = A B = C
5 fvmptmap.5 F = x R D B
6 3 2 elmap A R D A : D R
7 4 5 1 fvmpt A R D F A = C
8 6 7 sylbir A : D R F A = C