Metamath Proof Explorer


Theorem fvmptnf

Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvmptf.1 _xA
fvmptf.2 _xC
fvmptf.3 x=AB=C
fvmptf.4 F=xDB
Assertion fvmptnf ¬CVFA=

Proof

Step Hyp Ref Expression
1 fvmptf.1 _xA
2 fvmptf.2 _xC
3 fvmptf.3 x=AB=C
4 fvmptf.4 F=xDB
5 4 dmmptss domFD
6 5 sseli AdomFAD
7 eqid xDIB=xDIB
8 4 7 fvmptex FA=xDIBA
9 fvex ICV
10 nfcv _xI
11 10 2 nffv _xIC
12 3 fveq2d x=AIB=IC
13 1 11 12 7 fvmptf ADICVxDIBA=IC
14 9 13 mpan2 ADxDIBA=IC
15 8 14 eqtrid ADFA=IC
16 fvprc ¬CVIC=
17 15 16 sylan9eq AD¬CVFA=
18 17 expcom ¬CVADFA=
19 6 18 syl5 ¬CVAdomFFA=
20 ndmfv ¬AdomFFA=
21 19 20 pm2.61d1 ¬CVFA=