Metamath Proof Explorer


Theorem fvmptnf

Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvmptf.1 _ x A
fvmptf.2 _ x C
fvmptf.3 x = A B = C
fvmptf.4 F = x D B
Assertion fvmptnf ¬ C V F A =

Proof

Step Hyp Ref Expression
1 fvmptf.1 _ x A
2 fvmptf.2 _ x C
3 fvmptf.3 x = A B = C
4 fvmptf.4 F = x D B
5 4 dmmptss dom F D
6 5 sseli A dom F A D
7 eqid x D I B = x D I B
8 4 7 fvmptex F A = x D I B A
9 fvex I C V
10 nfcv _ x I
11 10 2 nffv _ x I C
12 3 fveq2d x = A I B = I C
13 1 11 12 7 fvmptf A D I C V x D I B A = I C
14 9 13 mpan2 A D x D I B A = I C
15 8 14 eqtrid A D F A = I C
16 fvprc ¬ C V I C =
17 15 16 sylan9eq A D ¬ C V F A =
18 17 expcom ¬ C V A D F A =
19 6 18 syl5 ¬ C V A dom F F A =
20 ndmfv ¬ A dom F F A =
21 19 20 pm2.61d1 ¬ C V F A =