Metamath Proof Explorer


Theorem fvmptnn04ifd

Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses fvmptnn04if.g G = n 0 if n = 0 A if n = S C if S < n D B
fvmptnn04if.s φ S
fvmptnn04if.n φ N 0
Assertion fvmptnn04ifd φ S < N N / n D V G N = N / n D

Proof

Step Hyp Ref Expression
1 fvmptnn04if.g G = n 0 if n = 0 A if n = S C if S < n D B
2 fvmptnn04if.s φ S
3 fvmptnn04if.n φ N 0
4 2 3ad2ant1 φ S < N N / n D V S
5 3 3ad2ant1 φ S < N N / n D V N 0
6 simp3 φ S < N N / n D V N / n D V
7 0red φ 0
8 2 nnred φ S
9 2 nngt0d φ 0 < S
10 7 8 9 ltnsymd φ ¬ S < 0
11 10 adantr φ N = 0 ¬ S < 0
12 breq2 N = 0 S < N S < 0
13 12 notbid N = 0 ¬ S < N ¬ S < 0
14 13 adantl φ N = 0 ¬ S < N ¬ S < 0
15 11 14 mpbird φ N = 0 ¬ S < N
16 15 pm2.21d φ N = 0 S < N N / n D = N / n A
17 16 impancom φ S < N N = 0 N / n D = N / n A
18 17 3adant3 φ S < N N / n D V N = 0 N / n D = N / n A
19 18 imp φ S < N N / n D V N = 0 N / n D = N / n A
20 3 nn0red φ N
21 ltnsym S N S < N ¬ N < S
22 8 20 21 syl2anc φ S < N ¬ N < S
23 22 imp φ S < N ¬ N < S
24 23 3adant3 φ S < N N / n D V ¬ N < S
25 24 pm2.21d φ S < N N / n D V N < S N / n D = N / n B
26 25 a1d φ S < N N / n D V 0 < N N < S N / n D = N / n B
27 26 3imp φ S < N N / n D V 0 < N N < S N / n D = N / n B
28 20 8 lttri3d φ N = S ¬ N < S ¬ S < N
29 28 simplbda φ N = S ¬ S < N
30 29 pm2.21d φ N = S S < N N / n D = N / n C
31 30 impancom φ S < N N = S N / n D = N / n C
32 31 3adant3 φ S < N N / n D V N = S N / n D = N / n C
33 32 imp φ S < N N / n D V N = S N / n D = N / n C
34 eqidd φ S < N N / n D V S < N N / n D = N / n D
35 1 4 5 6 19 27 33 34 fvmptnn04if φ S < N N / n D V G N = N / n D