Metamath Proof Explorer


Theorem fvmptrabfv

Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022)

Ref Expression
Hypotheses fvmptrabfv.f F = x V y G x | φ
fvmptrabfv.r x = X φ ψ
Assertion fvmptrabfv F X = y G X | ψ

Proof

Step Hyp Ref Expression
1 fvmptrabfv.f F = x V y G x | φ
2 fvmptrabfv.r x = X φ ψ
3 fveq2 x = X G x = G X
4 3 2 rabeqbidv x = X y G x | φ = y G X | ψ
5 fvex G X V
6 5 rabex y G X | ψ V
7 4 1 6 fvmpt X V F X = y G X | ψ
8 fvprc ¬ X V F X =
9 fvprc ¬ X V G X =
10 9 rabeqdv ¬ X V y G X | ψ = y | ψ
11 rab0 y | ψ =
12 10 11 eqtr2di ¬ X V = y G X | ψ
13 8 12 eqtrd ¬ X V F X = y G X | ψ
14 7 13 pm2.61i F X = y G X | ψ