Metamath Proof Explorer


Theorem fvmptt

Description: Closed theorem form of fvmpt . (Contributed by Scott Fenton, 21-Feb-2013) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fvmptt x x = A B = C F = x D B A D C V F A = C

Proof

Step Hyp Ref Expression
1 simp2 x x = A B = C F = x D B A D C V F = x D B
2 1 fveq1d x x = A B = C F = x D B A D C V F A = x D B A
3 risset A D x D x = A
4 elex C V C V
5 nfa1 x x x = A B = C
6 nfv x C V
7 nffvmpt1 _ x x D B A
8 7 nfeq1 x x D B A = C
9 6 8 nfim x C V x D B A = C
10 simprl x = A B = C x D C V x D
11 simplr x = A B = C x D C V B = C
12 simprr x = A B = C x D C V C V
13 11 12 eqeltrd x = A B = C x D C V B V
14 eqid x D B = x D B
15 14 fvmpt2 x D B V x D B x = B
16 10 13 15 syl2anc x = A B = C x D C V x D B x = B
17 simpll x = A B = C x D C V x = A
18 17 fveq2d x = A B = C x D C V x D B x = x D B A
19 16 18 11 3eqtr3d x = A B = C x D C V x D B A = C
20 19 exp43 x = A B = C x D C V x D B A = C
21 20 a2i x = A B = C x = A x D C V x D B A = C
22 21 com23 x = A B = C x D x = A C V x D B A = C
23 22 sps x x = A B = C x D x = A C V x D B A = C
24 5 9 23 rexlimd x x = A B = C x D x = A C V x D B A = C
25 4 24 syl7 x x = A B = C x D x = A C V x D B A = C
26 3 25 syl5bi x x = A B = C A D C V x D B A = C
27 26 imp32 x x = A B = C A D C V x D B A = C
28 27 3adant2 x x = A B = C F = x D B A D C V x D B A = C
29 2 28 eqtrd x x = A B = C F = x D B A D C V F A = C