Metamath Proof Explorer


Theorem fvn0elsuppb

Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion fvn0elsuppb B V X B G Fn B G X X supp G

Proof

Step Hyp Ref Expression
1 fvn0elsupp B V X B G Fn B G X X supp G
2 1 exp43 B V X B G Fn B G X X supp G
3 2 3imp B V X B G Fn B G X X supp G
4 simp3 B V X B G Fn B G Fn B
5 simp1 B V X B G Fn B B V
6 0ex V
7 6 a1i B V X B G Fn B V
8 elsuppfn G Fn B B V V X supp G X B G X
9 4 5 7 8 syl3anc B V X B G Fn B X supp G X B G X
10 simpr X B G X G X
11 9 10 syl6bi B V X B G Fn B X supp G G X
12 3 11 impbid B V X B G Fn B G X X supp G