Metamath Proof Explorer


Theorem fvn0fvelrn

Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion fvn0fvelrn F X F X ran F

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 F X X dom F Fun F X
2 eldmressnsn X dom F X dom F X
3 fvelrn Fun F X X dom F X F X X ran F X
4 pm3.2 F X X ran F X X dom F F X X ran F X X dom F
5 3 4 syl Fun F X X dom F X X dom F F X X ran F X X dom F
6 5 ex Fun F X X dom F X X dom F F X X ran F X X dom F
7 6 com13 X dom F X dom F X Fun F X F X X ran F X X dom F
8 2 7 mpd X dom F Fun F X F X X ran F X X dom F
9 8 imp X dom F Fun F X F X X ran F X X dom F
10 fvressn X dom F F X X = F X
11 10 eleq1d X dom F F X X ran F X F X ran F X
12 fvrnressn X dom F F X ran F X F X ran F
13 11 12 sylbid X dom F F X X ran F X F X ran F
14 13 impcom F X X ran F X X dom F F X ran F
15 1 9 14 3syl F X F X ran F