Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvn0fvelrn
Metamath Proof Explorer
Description: If the value of a function is not null, the value is an element of the
range of the function. (Contributed by Alexander van der Vekens , 22-Jul-2018) (Proof shortened by SN , 13-Jan-2025)
Ref
Expression
Assertion
fvn0fvelrn
⊢ F ⁡ X ≠ ∅ → F ⁡ X ∈ ran ⁡ F
Proof
Step
Hyp
Ref
Expression
1
fvrn0
⊢ F ⁡ X ∈ ran ⁡ F ∪ ∅
2
nelsn
⊢ F ⁡ X ≠ ∅ → ¬ F ⁡ X ∈ ∅
3
elunnel2
⊢ F ⁡ X ∈ ran ⁡ F ∪ ∅ ∧ ¬ F ⁡ X ∈ ∅ → F ⁡ X ∈ ran ⁡ F
4
1 2 3
sylancr
⊢ F ⁡ X ≠ ∅ → F ⁡ X ∈ ran ⁡ F