Metamath Proof Explorer


Theorem fvn0ssdmfun

Description: If a class' function values for certain arguments is not the empty set, the arguments are contained in the domain of the class, and the class restricted to the arguments is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion fvn0ssdmfun a D F a D dom F Fun F D

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 F a a dom F Fun F a
2 1 ralimi a D F a a D a dom F Fun F a
3 r19.26 a D a dom F Fun F a a D a dom F a D Fun F a
4 eleq1w a = p a dom F p dom F
5 4 rspccv a D a dom F p D p dom F
6 5 ssrdv a D a dom F D dom F
7 funrel Fun F a Rel F a
8 7 ralimi a D Fun F a a D Rel F a
9 reliun Rel a D F a a D Rel F a
10 8 9 sylibr a D Fun F a Rel a D F a
11 sneq a = x a = x
12 11 reseq2d a = x F a = F x
13 12 funeqd a = x Fun F a Fun F x
14 13 rspcva x D a D Fun F a Fun F x
15 dffun5 Fun F x Rel F x w y z w z F x z = y
16 vex x V
17 16 elsnres w z F x a w z = x a x a F
18 17 imbi1i w z F x z = y a w z = x a x a F z = y
19 18 albii z w z F x z = y z a w z = x a x a F z = y
20 19 exbii y z w z F x z = y y z a w z = x a x a F z = y
21 20 albii w y z w z F x z = y w y z a w z = x a x a F z = y
22 equcom a = z z = a
23 opeq12 w = x z = a w z = x a
24 23 ex w = x z = a w z = x a
25 22 24 syl5bi w = x a = z w z = x a
26 25 adantr w = x x z F a = z w z = x a
27 26 impcom a = z w = x x z F w z = x a
28 opeq2 z = a x z = x a
29 28 equcoms a = z x z = x a
30 29 eleq1d a = z x z F x a F
31 30 biimpcd x z F a = z x a F
32 31 adantl w = x x z F a = z x a F
33 32 impcom a = z w = x x z F x a F
34 27 33 jca a = z w = x x z F w z = x a x a F
35 34 ex a = z w = x x z F w z = x a x a F
36 35 spimevw w = x x z F a w z = x a x a F
37 36 ex w = x x z F a w z = x a x a F
38 37 imim1d w = x a w z = x a x a F z = y x z F z = y
39 38 alimdv w = x z a w z = x a x a F z = y z x z F z = y
40 39 eximdv w = x y z a w z = x a x a F z = y y z x z F z = y
41 40 spimvw w y z a w z = x a x a F z = y y z x z F z = y
42 21 41 sylbi w y z w z F x z = y y z x z F z = y
43 15 42 simplbiim Fun F x y z x z F z = y
44 14 43 syl x D a D Fun F a y z x z F z = y
45 44 expcom a D Fun F a x D y z x z F z = y
46 impexp x D x z F z = y x D x z F z = y
47 46 albii z x D x z F z = y z x D x z F z = y
48 47 exbii y z x D x z F z = y y z x D x z F z = y
49 19.21v z x D x z F z = y x D z x z F z = y
50 49 exbii y z x D x z F z = y y x D z x z F z = y
51 19.37v y x D z x z F z = y x D y z x z F z = y
52 48 50 51 3bitri y z x D x z F z = y x D y z x z F z = y
53 45 52 sylibr a D Fun F a y z x D x z F z = y
54 53 alrimiv a D Fun F a x y z x D x z F z = y
55 resiun2 F a D a = a D F a
56 55 eqcomi a D F a = F a D a
57 56 eleq2i x z a D F a x z F a D a
58 iunid a D a = D
59 58 reseq2i F a D a = F D
60 59 eleq2i x z F a D a x z F D
61 vex z V
62 61 opelresi x z F D x D x z F
63 57 60 62 3bitri x z a D F a x D x z F
64 63 imbi1i x z a D F a z = y x D x z F z = y
65 64 albii z x z a D F a z = y z x D x z F z = y
66 65 exbii y z x z a D F a z = y y z x D x z F z = y
67 66 albii x y z x z a D F a z = y x y z x D x z F z = y
68 54 67 sylibr a D Fun F a x y z x z a D F a z = y
69 dffun5 Fun a D F a Rel a D F a x y z x z a D F a z = y
70 10 68 69 sylanbrc a D Fun F a Fun a D F a
71 58 eqcomi D = a D a
72 71 reseq2i F D = F a D a
73 72 funeqi Fun F D Fun F a D a
74 55 funeqi Fun F a D a Fun a D F a
75 73 74 bitri Fun F D Fun a D F a
76 70 75 sylibr a D Fun F a Fun F D
77 6 76 anim12i a D a dom F a D Fun F a D dom F Fun F D
78 3 77 sylbi a D a dom F Fun F a D dom F Fun F D
79 2 78 syl a D F a D dom F Fun F D