| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvfundmfvn0 |
|
| 2 |
1
|
ralimi |
|
| 3 |
|
r19.26 |
|
| 4 |
|
eleq1w |
|
| 5 |
4
|
rspccv |
|
| 6 |
5
|
ssrdv |
|
| 7 |
|
funrel |
|
| 8 |
7
|
ralimi |
|
| 9 |
|
reliun |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
|
sneq |
|
| 12 |
11
|
reseq2d |
|
| 13 |
12
|
funeqd |
|
| 14 |
13
|
rspcva |
|
| 15 |
|
dffun5 |
|
| 16 |
|
vex |
|
| 17 |
16
|
elsnres |
|
| 18 |
17
|
imbi1i |
|
| 19 |
18
|
albii |
|
| 20 |
19
|
exbii |
|
| 21 |
20
|
albii |
|
| 22 |
|
equcom |
|
| 23 |
|
opeq12 |
|
| 24 |
23
|
ex |
|
| 25 |
22 24
|
biimtrid |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
impcom |
|
| 28 |
|
opeq2 |
|
| 29 |
28
|
equcoms |
|
| 30 |
29
|
eleq1d |
|
| 31 |
30
|
biimpcd |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
impcom |
|
| 34 |
27 33
|
jca |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
spimevw |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
imim1d |
|
| 39 |
38
|
alimdv |
|
| 40 |
39
|
eximdv |
|
| 41 |
40
|
spimvw |
|
| 42 |
21 41
|
sylbi |
|
| 43 |
15 42
|
simplbiim |
|
| 44 |
14 43
|
syl |
|
| 45 |
44
|
expcom |
|
| 46 |
|
impexp |
|
| 47 |
46
|
albii |
|
| 48 |
47
|
exbii |
|
| 49 |
|
19.21v |
|
| 50 |
49
|
exbii |
|
| 51 |
|
19.37v |
|
| 52 |
48 50 51
|
3bitri |
|
| 53 |
45 52
|
sylibr |
|
| 54 |
53
|
alrimiv |
|
| 55 |
|
resiun2 |
|
| 56 |
55
|
eqcomi |
|
| 57 |
56
|
eleq2i |
|
| 58 |
|
iunid |
|
| 59 |
58
|
reseq2i |
|
| 60 |
59
|
eleq2i |
|
| 61 |
|
vex |
|
| 62 |
61
|
opelresi |
|
| 63 |
57 60 62
|
3bitri |
|
| 64 |
63
|
imbi1i |
|
| 65 |
64
|
albii |
|
| 66 |
65
|
exbii |
|
| 67 |
66
|
albii |
|
| 68 |
54 67
|
sylibr |
|
| 69 |
|
dffun5 |
|
| 70 |
10 68 69
|
sylanbrc |
|
| 71 |
58
|
eqcomi |
|
| 72 |
71
|
reseq2i |
|
| 73 |
72
|
funeqi |
|
| 74 |
55
|
funeqi |
|
| 75 |
73 74
|
bitri |
|
| 76 |
70 75
|
sylibr |
|
| 77 |
6 76
|
anim12i |
|
| 78 |
3 77
|
sylbi |
|
| 79 |
2 78
|
syl |
|