Step |
Hyp |
Ref |
Expression |
1 |
|
fvfundmfvn0 |
|
2 |
1
|
ralimi |
|
3 |
|
r19.26 |
|
4 |
|
eleq1w |
|
5 |
4
|
rspccv |
|
6 |
5
|
ssrdv |
|
7 |
|
funrel |
|
8 |
7
|
ralimi |
|
9 |
|
reliun |
|
10 |
8 9
|
sylibr |
|
11 |
|
sneq |
|
12 |
11
|
reseq2d |
|
13 |
12
|
funeqd |
|
14 |
13
|
rspcva |
|
15 |
|
dffun5 |
|
16 |
|
vex |
|
17 |
16
|
elsnres |
|
18 |
17
|
imbi1i |
|
19 |
18
|
albii |
|
20 |
19
|
exbii |
|
21 |
20
|
albii |
|
22 |
|
equcom |
|
23 |
|
opeq12 |
|
24 |
23
|
ex |
|
25 |
22 24
|
syl5bi |
|
26 |
25
|
adantr |
|
27 |
26
|
impcom |
|
28 |
|
opeq2 |
|
29 |
28
|
equcoms |
|
30 |
29
|
eleq1d |
|
31 |
30
|
biimpcd |
|
32 |
31
|
adantl |
|
33 |
32
|
impcom |
|
34 |
27 33
|
jca |
|
35 |
34
|
ex |
|
36 |
35
|
spimevw |
|
37 |
36
|
ex |
|
38 |
37
|
imim1d |
|
39 |
38
|
alimdv |
|
40 |
39
|
eximdv |
|
41 |
40
|
spimvw |
|
42 |
21 41
|
sylbi |
|
43 |
15 42
|
simplbiim |
|
44 |
14 43
|
syl |
|
45 |
44
|
expcom |
|
46 |
|
impexp |
|
47 |
46
|
albii |
|
48 |
47
|
exbii |
|
49 |
|
19.21v |
|
50 |
49
|
exbii |
|
51 |
|
19.37v |
|
52 |
48 50 51
|
3bitri |
|
53 |
45 52
|
sylibr |
|
54 |
53
|
alrimiv |
|
55 |
|
resiun2 |
|
56 |
55
|
eqcomi |
|
57 |
56
|
eleq2i |
|
58 |
|
iunid |
|
59 |
58
|
reseq2i |
|
60 |
59
|
eleq2i |
|
61 |
|
vex |
|
62 |
61
|
opelresi |
|
63 |
57 60 62
|
3bitri |
|
64 |
63
|
imbi1i |
|
65 |
64
|
albii |
|
66 |
65
|
exbii |
|
67 |
66
|
albii |
|
68 |
54 67
|
sylibr |
|
69 |
|
dffun5 |
|
70 |
10 68 69
|
sylanbrc |
|
71 |
58
|
eqcomi |
|
72 |
71
|
reseq2i |
|
73 |
72
|
funeqi |
|
74 |
55
|
funeqi |
|
75 |
73 74
|
bitri |
|
76 |
70 75
|
sylibr |
|
77 |
6 76
|
anim12i |
|
78 |
3 77
|
sylbi |
|
79 |
2 78
|
syl |
|