Metamath Proof Explorer


Theorem fvopab4ndm

Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008)

Ref Expression
Hypothesis fvopab4ndm.1 F = x y | x A φ
Assertion fvopab4ndm ¬ B A F B =

Proof

Step Hyp Ref Expression
1 fvopab4ndm.1 F = x y | x A φ
2 1 dmeqi dom F = dom x y | x A φ
3 dmopabss dom x y | x A φ A
4 2 3 eqsstri dom F A
5 4 sseli B dom F B A
6 ndmfv ¬ B dom F F B =
7 5 6 nsyl5 ¬ B A F B =