Metamath Proof Explorer


Theorem fvopab6

Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvopab6.1 F=xy|φy=B
fvopab6.2 x=Aφψ
fvopab6.3 x=AB=C
Assertion fvopab6 ADCRψFA=C

Proof

Step Hyp Ref Expression
1 fvopab6.1 F=xy|φy=B
2 fvopab6.2 x=Aφψ
3 fvopab6.3 x=AB=C
4 elex ADAV
5 3 eqeq2d x=Ay=By=C
6 2 5 anbi12d x=Aφy=Bψy=C
7 iba y=Cψψy=C
8 7 bicomd y=Cψy=Cψ
9 moeq *yy=B
10 9 moani *yφy=B
11 10 a1i xV*yφy=B
12 vex xV
13 12 biantrur φy=BxVφy=B
14 13 opabbii xy|φy=B=xy|xVφy=B
15 1 14 eqtri F=xy|xVφy=B
16 6 8 11 15 fvopab3ig AVCRψFA=C
17 4 16 sylan ADCRψFA=C
18 17 3impia ADCRψFA=C