Metamath Proof Explorer


Theorem fvopab6

Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvopab6.1 F = x y | φ y = B
fvopab6.2 x = A φ ψ
fvopab6.3 x = A B = C
Assertion fvopab6 A D C R ψ F A = C

Proof

Step Hyp Ref Expression
1 fvopab6.1 F = x y | φ y = B
2 fvopab6.2 x = A φ ψ
3 fvopab6.3 x = A B = C
4 elex A D A V
5 3 eqeq2d x = A y = B y = C
6 2 5 anbi12d x = A φ y = B ψ y = C
7 iba y = C ψ ψ y = C
8 7 bicomd y = C ψ y = C ψ
9 moeq * y y = B
10 9 moani * y φ y = B
11 10 a1i x V * y φ y = B
12 vex x V
13 12 biantrur φ y = B x V φ y = B
14 13 opabbii x y | φ y = B = x y | x V φ y = B
15 1 14 eqtri F = x y | x V φ y = B
16 6 8 11 15 fvopab3ig A V C R ψ F A = C
17 4 16 sylan A D C R ψ F A = C
18 17 3impia A D C R ψ F A = C