Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses fvpr1.1 A V
fvpr1.2 C V
Assertion fvpr1 A B A C B D A = C

Proof

Step Hyp Ref Expression
1 fvpr1.1 A V
2 fvpr1.2 C V
3 df-pr A C B D = A C B D
4 3 fveq1i A C B D A = A C B D A
5 necom A B B A
6 fvunsn B A A C B D A = A C A
7 5 6 sylbi A B A C B D A = A C A
8 4 7 eqtrid A B A C B D A = A C A
9 1 2 fvsn A C A = C
10 8 9 eqtrdi A B A C B D A = C