Metamath Proof Explorer


Theorem fvpr2

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses fvpr2.1 B V
fvpr2.2 D V
Assertion fvpr2 A B A C B D B = D

Proof

Step Hyp Ref Expression
1 fvpr2.1 B V
2 fvpr2.2 D V
3 prcom A C B D = B D A C
4 3 fveq1i A C B D B = B D A C B
5 necom A B B A
6 1 2 fvpr1 B A B D A C B = D
7 5 6 sylbi A B B D A C B = D
8 4 7 eqtrid A B A C B D B = D