Metamath Proof Explorer


Theorem fvprif

Description: The value of the pair function at an element of 2o . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion fvprif A V B W C 2 𝑜 A 1 𝑜 B C = if C = A B

Proof

Step Hyp Ref Expression
1 fvpr0o A V A 1 𝑜 B = A
2 1 3ad2ant1 A V B W C 2 𝑜 A 1 𝑜 B = A
3 2 adantr A V B W C 2 𝑜 C = A 1 𝑜 B = A
4 simpr A V B W C 2 𝑜 C = C =
5 4 fveq2d A V B W C 2 𝑜 C = A 1 𝑜 B C = A 1 𝑜 B
6 4 iftrued A V B W C 2 𝑜 C = if C = A B = A
7 3 5 6 3eqtr4d A V B W C 2 𝑜 C = A 1 𝑜 B C = if C = A B
8 fvpr1o B W A 1 𝑜 B 1 𝑜 = B
9 8 3ad2ant2 A V B W C 2 𝑜 A 1 𝑜 B 1 𝑜 = B
10 9 adantr A V B W C 2 𝑜 C = 1 𝑜 A 1 𝑜 B 1 𝑜 = B
11 simpr A V B W C 2 𝑜 C = 1 𝑜 C = 1 𝑜
12 11 fveq2d A V B W C 2 𝑜 C = 1 𝑜 A 1 𝑜 B C = A 1 𝑜 B 1 𝑜
13 1n0 1 𝑜
14 13 neii ¬ 1 𝑜 =
15 11 eqeq1d A V B W C 2 𝑜 C = 1 𝑜 C = 1 𝑜 =
16 14 15 mtbiri A V B W C 2 𝑜 C = 1 𝑜 ¬ C =
17 16 iffalsed A V B W C 2 𝑜 C = 1 𝑜 if C = A B = B
18 10 12 17 3eqtr4d A V B W C 2 𝑜 C = 1 𝑜 A 1 𝑜 B C = if C = A B
19 elpri C 1 𝑜 C = C = 1 𝑜
20 df2o3 2 𝑜 = 1 𝑜
21 19 20 eleq2s C 2 𝑜 C = C = 1 𝑜
22 21 3ad2ant3 A V B W C 2 𝑜 C = C = 1 𝑜
23 7 18 22 mpjaodan A V B W C 2 𝑜 A 1 𝑜 B C = if C = A B