Metamath Proof Explorer


Theorem fvprmselelfz

Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020)

Ref Expression
Hypothesis fvprmselelfz.f F = m if m m 1
Assertion fvprmselelfz N X 1 N F X 1 N

Proof

Step Hyp Ref Expression
1 fvprmselelfz.f F = m if m m 1
2 eleq1 m = X m X
3 id m = X m = X
4 2 3 ifbieq1d m = X if m m 1 = if X X 1
5 iftrue X if X X 1 = X
6 5 adantr X N X 1 N if X X 1 = X
7 4 6 sylan9eqr X N X 1 N m = X if m m 1 = X
8 elfznn X 1 N X
9 8 adantl N X 1 N X
10 9 adantl X N X 1 N X
11 1 7 10 10 fvmptd2 X N X 1 N F X = X
12 simprr X N X 1 N X 1 N
13 11 12 eqeltrd X N X 1 N F X 1 N
14 iffalse ¬ X if X X 1 = 1
15 14 adantr ¬ X N X 1 N if X X 1 = 1
16 4 15 sylan9eqr ¬ X N X 1 N m = X if m m 1 = 1
17 9 adantl ¬ X N X 1 N X
18 1nn 1
19 18 a1i ¬ X N X 1 N 1
20 1 16 17 19 fvmptd2 ¬ X N X 1 N F X = 1
21 elnnuz N N 1
22 eluzfz1 N 1 1 1 N
23 21 22 sylbi N 1 1 N
24 23 adantr N X 1 N 1 1 N
25 24 adantl ¬ X N X 1 N 1 1 N
26 20 25 eqeltrd ¬ X N X 1 N F X 1 N
27 13 26 pm2.61ian N X 1 N F X 1 N