Metamath Proof Explorer


Theorem fvproj

Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that F and G are the projections of H to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019)

Ref Expression
Hypotheses fvproj.h H=xA,yBFxGy
fvproj.x φXA
fvproj.y φYB
Assertion fvproj φHXY=FXGY

Proof

Step Hyp Ref Expression
1 fvproj.h H=xA,yBFxGy
2 fvproj.x φXA
3 fvproj.y φYB
4 df-ov XHY=HXY
5 fveq2 a=XFa=FX
6 5 opeq1d a=XFaGb=FXGb
7 fveq2 b=YGb=GY
8 7 opeq2d b=YFXGb=FXGY
9 fveq2 x=aFx=Fa
10 9 opeq1d x=aFxGy=FaGy
11 fveq2 y=bGy=Gb
12 11 opeq2d y=bFaGy=FaGb
13 10 12 cbvmpov xA,yBFxGy=aA,bBFaGb
14 1 13 eqtri H=aA,bBFaGb
15 opex FXGYV
16 6 8 14 15 ovmpo XAYBXHY=FXGY
17 2 3 16 syl2anc φXHY=FXGY
18 4 17 eqtr3id φHXY=FXGY