Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvres
Next ⟩
fvresd
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvres
Description:
The value of a restricted function.
(Contributed by
NM
, 2-Aug-1994)
Ref
Expression
Assertion
fvres
⊢
A
∈
B
→
F
↾
B
⁡
A
=
F
⁡
A
Proof
Step
Hyp
Ref
Expression
1
vex
⊢
x
∈
V
2
1
brresi
⊢
A
F
↾
B
x
↔
A
∈
B
∧
A
F
x
3
2
baib
⊢
A
∈
B
→
A
F
↾
B
x
↔
A
F
x
4
3
iotabidv
⊢
A
∈
B
→
ι
x
|
A
F
↾
B
x
=
ι
x
|
A
F
x
5
df-fv
⊢
F
↾
B
⁡
A
=
ι
x
|
A
F
↾
B
x
6
df-fv
⊢
F
⁡
A
=
ι
x
|
A
F
x
7
4
5
6
3eqtr4g
⊢
A
∈
B
→
F
↾
B
⁡
A
=
F
⁡
A